Requirements for low mode coupling.

From coupled mode theory [1, 2] the amount of power coupled between two modes LP_{ab} and LP_{xy} is given as

$$2\alpha_m = \sum_{p=1}^{\infty} C^2 \Phi (\beta_{ab} - \beta_{xy}),$$ \hspace{1cm} (1)

Where C is the coupling coefficient given by below overlap integral

$$C^2 = \frac{k^2}{2} \left(\int_0^\infty \frac{dn}{dr} E_{ab} E_{xy} rdr \right)^2,$$ \hspace{1cm} (2)

Where k is the wavenumber and E_{ab} and E_{xy} are the field distribution of LP_{ab} and LP_{xy}, further Φ is power spectrum of the deformation of the fiber axis:

$$\Phi_1 (\Omega) = \left(\frac{1}{2L} \right)^2 \left| \int_{-L}^{L} f_i (z) \exp (-i\Omega z) dz \right|^2,$$ \hspace{1cm} (3)

where $f_i(z)$ is the position of the fiber along the length of the fiber (z). Due to the stiffness of the fiber and the filtering effect of the coating the deformation spectrum will be largest for small angular frequencies (Ω). Therefore, it is from (1) seen that the mode coupling is maximum when the difference between the propagation constants $\beta_{ab} - \beta_{xy} = k(n_{\text{eff},ab} - n_{\text{eff},xy}) = k \cdot \Delta n_{\text{eff}} \approx 0$, \hspace{1cm} (4)

I.e. when the effective index difference Δn_{eff} is close to zero the mode coupling is maximized. This is further confirmed by experimental data. Ryo Maruyama et al. [3] have measured the mode coupling coefficient h

$$h = \frac{P_2}{P_1 L},$$ \hspace{1cm} (5)

where P_2 is the amount of power in mode 2 coupled from mode 1 with power P_1 over the length L. The measured coupling coefficient by Ryo Maruyama et al. for different few mode fibers spooled on a spool with a diameter of 300 mm with a winding tension of 0.7 N versus Δn_{eff} is shown in Figure 1 by blue diamonds.
Figure 1. Measured mode coupling coefficient versus Δ_{neff} for different fibers

Measurements by OFS [4] on different OFS fibers are shown as well in Figure 1 by red squares, green triangle’s, pink crosses and light blue double crosses. The OFS measurements are done on spools with a diameter of 180 mm and a winding tension of 0.2 N. Even though the winding conditions are much different for the OFS fibers it is observed that the two-mode step index fiber and the four-mode step index fiber are on the same line as the Maruyama measurements. The OFS two and four mode graded index fibers are far from the line, but the mode coupling on these fibers were so low that they were close to the detection limit of our measurement set up.